

Shoulder to shoulder across borders: **Light Vehicle 2025 Demonstrators**

Demo Leader: Jean-Pierre Heijster, Automotive NL

Demo Leader: Ioanna Koutla, Université de Liège

Suspension module e.g. AM-consolidated parts

Demo Leader: Jan Stroobants, Flanders Make

Demo Leader: Dr. Michael Effing, AMAC

✓ We have chosen four demonstrators

Project Partners

Co-Financers

Gearbox housing. Why?

- High demand in reducing weight in EV.
- Excellent opportunity to try and reduce weight in powertrain.
- Excellent opportunity to reduce CO₂ emissions, while the whole Life Cycle Assessment of electric vehicles (from cradle-to-grave) is under research.
- Excellent opportunity to combine the existent capabilities in EMR, throughout the whole value chain.

Application example: All types of EV

Characteristics:

- ☐ The gearbox housing is generally comprised by two symmetrical halves of molded aluminium.
- ☐ Only one half is studied.
- ☐ Traditional material : Aluminium
- ☐ Proposed application : Aluminium & plastic (PA6 compounded with SMA styrene maleic anhydride).
- ☐ Lifetime comparable to that of a usual gearbox housing.

Simplified version:

 Simplifications are made to eliminate parts that give no additional information.

50%Al / 50%plastic

- Topology Optimization is used as a tool to investigate the best allocation of each material in the final design.
- A new design taking into consideration the TO results and manufacturing constraints is the following step.

Objective of the Demo Project

Tł	ne objective of this demo project is:
	To create a multi-material gearbox housing which will be lighter than the traditional one made only of aluminium.
	To reduce the CO ₂ emissions during the life cycle.
	To create a lighter part in powertrain where it is already difficult to reduce weight.
	To acquire a generic part and showcase that the research behind it's development can be applied for the development of similar parts in several vehicle types.

Partners

- Company Name: GDTech engineering
- Webpage: <u>www.gdtech.eu</u>
- Main Resposibility: Engineering

- Company Name: Polyscope Polymers B.V.
- Webpage: <u>www.polyscope.eu</u>
- Main Resposibility: Material supplier

Partners

- Company Name: Tenco DDM
- Webpage: <u>www.tenco-online.com</u>
- Main Resposibility: Prototyping

- Company Name: PEG GmbH
- Webpage: <u>www.pe-group.de</u>
- Main Resposibility: Plastics simulation

Partners

- Company Name: Flanders Make
- Webpage: <u>www.flandersmake.be</u>
- Main Resposibility: Design & engineering

Partners and External Service Providers

Engineering	Raw Material	Equipment/Tooling	Tier 1/Tier 2	OEM	Others		
 GDTech/BE (Wallonia) PEG GmbH/DE 	• Polyscope Polymers/NL	• Tenco DDM/BE (Flanders)		• Toyota/BE	• Flanders Make/BE (Flanders)		

Scope of the project

- ☐ Simulation of injection overmolding production method.
 - FE-Modelling / Meshing
 - Injection Molding Analysis
 - Determination of a suitable gating concept
 - Evaluation of the general filling behavior
 - Determination of the shrinkage and warpage based deflection behavior
 - Checking of construction issues and (if needed) optimization instructions
- Vacuum casting production method
 - Print master parts in SLA (epoxy resin)
 - Create the metallic part using a sand mold
 - Create a silicon mold using the metallic part in it, cast resin in the mold, simulating the injection overmolding.
 - Result quite close to that of injection overmolding.

Expected deliverables

- ☐ A virtual prototype using the simulation of injection overmolding production method.
 - Results from a rheological point of view
 - Adhesion between the two materials
- ☐ A physical prototype using the vacuum casting production method.
 - Physical representation of the two material gearbox housing
 - Possibility to produce more prototypes and perform testing
- □ Life Cycle Assesment for the existing part, LCA for the part produced with the injection overmolding method and comparison to showcase the percentage of CO₂ emissions reduction.

Project planning

Define the shedule of your demo Project using the icons below the table:

	Jan-20	Feb-20	Mar-20	Apr-20	May-20	Jun-20	Jul-20	Aug-20	Sep-20	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	May-21	Jun-21
Design and Engineering																	
Material Selection																	
Tool/ Fixtures Design																	
Prototyping/ Molding															,		
Validation/ Testing																	
Analysis (Cost, LCA, others)			23	23							23	43					
Roadshows																	

Bibliography

- Deserano C., Etude de nouvelles fonctionnalités en optimisation topologique, Mémoire de fin d'études, University of Liège, 2019.
- Tromme E., Tortorelli D., Bruls O., Duysinx P., Structural optimization of multibody system components described using level set techniques, Structural and Multidisciplinary Optimization, 2015.
- Bruyneel M., Duysinx P., Fleury C., A family of MMA approximations for structural optimization, Structural and Multidisciplinary Optimization, 2001.
- Ferreira J.V., Partidário P., Life cycle assessment of a multi-material car component, The International Journal of Life Cycle Assessment, 2007.
- Del Pero F., Delogu M., Pierini M., Life Cycle Assessment in the automotive sector: a comparative case study of Internal Comustion Engine (ICE) and electric car, Procedia Structural Integrity, 2018.